首页 > 科技 > 详解一道腾讯面试题:编辑距离

详解一道腾讯面试题:编辑距离

预计阅读时间:8 分钟

前几天在网上看到一份鹅场的面试题,算法部分大半是动态规划,最后一题就是写一个计算编辑距离的函数,今天就专门写一篇文章来探讨一下这个经典问题。

我个人很喜欢编辑距离这个问题,因为它看起来十分困难,解法却出奇得简单漂亮,而且它是少有的比较实用的算法(是的,我承认很多算法问题都不太实用)。下面先来看下题目:


为什么说这个问题难呢,因为显而易见,它就是难,让人手足无措,望而生畏。

为什么说它实用呢,因为前几天我就在日常生活中用到了这个算法。之前有一篇公众号文章由于疏忽,写错位了一段内容,我决定修改这部分内容让逻辑通顺。但是公众号文章最多只能修改 20 个字,且只支持增、删、替换操作(跟编辑距离问题一模一样),于是我就用算法求出了一个最优方案,只用了 16 步就完成了修改。

再比如高大上一点的应用,DNA 序列是由 A,G,C,T 组成的序列,可以类比成字符串。编辑距离可以衡量两个 DNA 序列的相似度,编辑距离越小,说明这两段 DNA 越相似,说不定这俩 DNA 的主人是远古近亲啥的。

下面言归正传,详细讲解一下编辑距离该怎么算,相信本文会让你有收获。

一、思路

编辑距离问题就是给我们两个字符串 s1 和 s2 ,只能用三种操作,让我们把 s1 变成 s2 ,求最少的操作数。需要明确的是,不管是把 s1 变成 s2 还是反过来,结果都是一样的,所以后文就以 s1 变成 s2 举例。

前文最长公共子序列说过, 解决两个字符串的动态规划问题,一般都是用两个指针 i,j 分别指向两个字符串的最后,然后一步步往前走,缩小问题的规模 。

设两个字符串分别为 "rad" 和 "apple",为了把 s1 变成 s2 ,算法会这样进行:



请记住这个 GIF 过程,这样就能算出编辑距离。 关键在于如何做出正确的操作,稍后会讲。

根据上面的 GIF,可以发现操作不只有三个,其实还有第四个操作,就是什么都不要做(skip)。比如这个情况:


因为这两个字符本来就相同,为了使编辑距离最小,显然不应该对它们有任何操作,直接往前移动 i,j 即可。

还有一个很容易处理的情况,就是 j 走完 s2 时,如果 i 还没走完 s1 ,那么只能用删除操作把 s1 缩短为 s2 。比如这个情况:


类似的,如果 i 走完 s1 时 j 还没走完了 s2 ,那就只能用插入操作把 s2 剩下的字符全部插入 s1 。 等会会看到,这两种情况就是算法的 base case

下面详解一下如何将这个思路转化成代码,坐稳,准备发车了。

二、代码详解

先梳理一下之前的思路:

base case 是 i 走完 s1 或 j 走完 s2 ,可以直接返回另一个字符串剩下的长度。

对于每对儿字符 s1[i] 和 s2[j] ,可以有四种操作:

if s1[i] == s2[j]:
啥都别做(skip)
i, j 同时向前移动
else:
三选一:
插入(insert)
删除(delete)
替换(replace)

有这个框架,问题就已经解决了。读者也许会问,这个「三选一」到底该怎么选择呢?很简单,全试一遍,哪个操作最后得到的编辑距离最小,就选谁。这里需要递归技巧,理解需要点技巧,先看下代码:


下面来详细解释一下这段递归代码,base case 应该不用解释了,主要解释一下递归部分。

都说递归代码的可解释性很好,这是有道理的,只要理解函数的定义,就能很清楚地理解算法的逻辑。我们这里 dp(i, j) 函数的定义是这样的:

def dp(i, j) -> int
# 返回 s1[0..i] 和 s2[0..j] 的最小编辑距离

记住这个定义之后,先来看这段代码:

if s1[i] == s2[j]:
return dp(i - 1, j - 1) # 啥都不做
# 解释:
# 本来就相等,不需要任何操作
# s1[0..i] 和 s2[0..j] 的最小编辑距离等于
# s1[0..i-1] 和 s2[0..j-1] 的最小编辑距离
# 也就是说 dp(i, j) 等于 dp(i-1, j-1)

如果 s1[i]!=s2[j] ,就要对三个操作递归了,稍微需要点思考:

dp(i, j - 1) + 1, # 插入
# 解释:
# 我直接在 s1[i] 插入一个和 s2[j] 一样的字符
# 那么 s2[j] 就被匹配了,前移 j,继续跟 i 对比
# 别忘了操作数加一


dp(i - 1, j) + 1, # 删除
# 解释:
# 我直接把 s[i] 这个字符删掉
# 前移 i,继续跟 j 对比
# 操作数加一


dp(i - 1, j - 1) + 1 # 替换
# 解释:
# 我直接把 s1[i] 替换成 s2[j],这样它俩就匹配了
# 同时前移 i,j 继续对比
# 操作数加一


现在,你应该完全理解这段短小精悍的代码了。还有点小问题就是,这个解法是暴力解法,存在重叠子问题,需要用动态规划技巧来优化。

怎么能一眼看出存在重叠子问题呢?前文 动态规划之正则表达式 有提过,这里再简单提一下,需要抽象出本文算法的递归框架:

def dp(i, j):
dp(i - 1, j - 1) #1
dp(i, j - 1) #2
dp(i - 1, j) #3

对于子问题 dp(i-1,j-1) ,如何通过原问题 dp(i,j) 得到呢?有不止一条路径,比如 dp(i,j)->#1 和 dp(i,j)->#2->#3 。一旦发现一条重复路径,就说明存在巨量重复路径,也就是重叠子问题。

三、动态规划优化

对于重叠子问题呢,前文动态规划详解 介绍过,优化方法无非是备忘录或者 DP table。

备忘录很好加,原来的代码稍加修改即可:

def minDistance(s1, s2) -> int:
memo = dict() # 备忘录
def dp(i, j):
if (i, j) in memo:
return memo[(i, j)]
...
if s1[i] == s2[j]:
memo[(i, j)] = ...
else:
memo[(i, j)] = ...
return memo[(i, j)]
return dp(len(s1) - 1, len(s2) - 1)

主要说下 DP table 的解法:

首先明确 dp 数组的含义,dp 数组是一个二维数组,长这样:


dp[i][j] 的含义和之前的 dp 函数类似:

def dp(i, j) -> int
# 返回 s1[0..i] 和 s2[0..j] 的最小编辑距离
dp[i-1][j-1]
# 存储 s1[0..i] 和 s2[0..j] 的最小编辑距离

有了之前递归解法的铺垫,应该很容易理解。 dp 函数的 base case 是 i,j 等于 -1,而数组索引至少是 0,所以 dp 数组会偏移一位, dp[..][0] 和 dp[0][..] 对应 base case。 。

既然 dp 数组和递归 dp 函数含义一样,也就可以直接套用之前的思路写代码, 唯一不同的是,DP table 是自底向上求解,递归解法是自顶向下求解 :


三、扩展延伸

一般来说,处理两个字符串的动态规划问题,都是按本文的思路处理,建立 DP table。为什么呢,因为易于找出状态转移的关系,比如编辑距离的 DP table:


还有一个细节,既然每个 dp[i][j] 只和它附近的三个状态有关,空间复杂度是可以压缩成 O (m i n ( M , N ) ) 的(M,N 是两个字符串的长度)。不难,但是可解释性大大降低,读者可以自己尝试优化一下。

你可能还会问, 这里只求出了最小的编辑距离,那具体的操作是什么 ?之前举的修改公众号文章的例子,只有一个最小编辑距离肯定不够,还得知道具体怎么修改才行。

这个其实很简单,代码稍加修改,给 dp 数组增加额外的信息即可:

// int[][] dp;
Node[][] dp;
class Node {
int val;
int choice;
// 0 代表啥都不做
// 1 代表插入
// 2 代表删除
// 3 代表替换
}

val 属性就是之前的 dp 数组的数值, choice 属性代表操作。在做最优选择时,顺便把操作记录下来,然后就从结果反推具体操作。

我们的最终结果不是 dp[m][n] 吗,这里的 val 存着最小编辑距离, choice 存着最后一个操作,比如说是插入操作,那么就可以左移一格:


重复此过程,可以一步步回到起点 dp[0][0] ,形成一条路径,按这条路径上的操作编辑对应索引的字符,就是最佳方案:


这就是编辑距离算法的全部内容,希望本文对你有帮助。

本文来自投稿,不代表本人立场,如若转载,请注明出处:http://www.souzhinan.com/kj/106643.html